# Standard imports
import os
# Third-party imports
import pandas as pd
import numpy as np
# AML imports
from azure.ai.ml import command, MLClient
from azure.identity import DefaultAzureCredential
MLFlow Hello World
Exploring MlFlow through Hello World experiments.
Note: this post is just a draft in progress. As of now, it consists of a collection of random notes.
Initial imports
Additional imports
### Multiple-metric and dataset imports
import time
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import precision_recall_curve, classification_report
import matplotlib.pyplot as plt
import mlflow
from mlflow.entities import Metric
from mlflow.tracking import MlflowClient
from mlflow.models import infer_signature
Connecting
# authenticate
= DefaultAzureCredential()
credential
# Get a handle to the workspace
= MLClient.from_config (
ml_client =credential
credential )
Found the config file in: /config.json
Logging details
First experiment: see why the MLflow job created by hello world notebook does not log code, etc. I assume this is because we need to use command
and create a job through to the ml_client
, as explained in the hello world notebook, under section running script as a job
:
%%writefile hello_world_with_logs.py
import mlflow
from hello_world_core import hello_world, parse_args
def start_logging (args):
# set name for logging
"Hello World with logging")
mlflow.set_experiment(
mlflow.start_run()"name to log", args.name)
mlflow.log_param (
def finish_logging ():
mlflow.end_run ()
def main():
"""Main function of the script."""
= parse_args ()
args
start_logging (args)
hello_world (args.name)
finish_logging ()
if __name__ == "__main__":
main()
Writing hello_world_with_logs.py
# configure job
= command(
job =dict(
inputs="Jaume", # default value of our parameter
name
),=f"./", # location of source code: in this case, the root folder
code="python hello_world_with_logs.py --name ${{inputs.name}}",
command="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
environment="Hello World with logging and job",
display_name
)
# submit job
ml_client.create_or_update(job)
Found the config file in: /config.json
Uploading data_science (12.66 MBs): 100%|██████████| 12658976/12658976 [00:00<00:00, 18557482.88it/s]
Experiment | Name | Type | Status | Details Page |
data_science | jolly_malanga_wgt7b8mb36 | command | Starting | Link to Azure Machine Learning studio |
Result
In the previous example there is one error: it seems that we cannot indicate an experiment name unless it is the same as the one indicated in the command function. Since we didn’t indicate any experiment name in that function, we try to do it now:
Fixing error
= command(
job =dict(
inputs="Jaume", # default value of our parameter
name
),=f"./", # location of source code: in this case, the root folder
code="python hello_world_with_logs.py --name ${{inputs.name}}",
command="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
environment="Hello World with logging and job",
display_name="Hello World with logging",
experiment_name
)
# submit job
ml_client.create_or_update(job)
Uploading data_science (12.66 MBs): 100%|██████████| 12664739/12664739 [00:00<00:00, 18366160.15it/s]
Experiment | Name | Type | Status | Details Page |
Hello World with logging | joyful_brick_2zb5xmvktl | command | Starting | Link to Azure Machine Learning studio |
Result
- A job is created with experiment name “Hello world with logging” and latest job name “Hello World with logging and job”, which is the display_name indicated in the command function (see screenshot below)
- Both code and logs are stored as part of this job.
-
Logging experiments
Links:
https://mlflow.org/docs/2.0.0/tracking.html#logging-functions
https://mlflow.org/docs/2.0.0/tracking.html#managing-experiments-and-runs-with-the-tracking-service-api
%%writefile hello_world_experiments.py
import mlflow
from hello_world_core import hello_world, parse_args
def main():
"""Main function of the script."""
= ["John", "Mary", "Ana"]
names for idx, name in enumerate(names):
str(idx))
mlflow.create_experiment (
mlflow.start_run()"name to log", name)
mlflow.log_param ("length", len(name))
mlflow.log_metric (
mlflow.end_run ()
hello_world (name)
if __name__ == "__main__":
main()
Writing hello_world_experiments.py
# Standard imports
import os
# Third-party imports
import pandas as pd
# AML imports
from azure.ai.ml import command, MLClient
from azure.identity import DefaultAzureCredential
# authenticate
= DefaultAzureCredential()
credential
# Get a handle to the workspace
= MLClient.from_config (
ml_client =credential
credential
)
# configure job
= command(
job =f"./", # location of source code: in this case, the root folder
code="python hello_world_experiments.py",
command="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
environment="Hello World with experiments",
display_name
)
# submit job
ml_client.create_or_update(job)
Found the config file in: /config.json
Class AutoDeleteSettingSchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class AutoDeleteConditionSchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class BaseAutoDeleteSettingSchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class IntellectualPropertySchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class ProtectionLevelSchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class BaseIntellectualPropertySchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Uploading data_science (12.75 MBs): 100%|██████████| 12749662/12749662 [00:00<00:00, 15505064.12it/s]
Experiment | Name | Type | Status | Details Page |
data_science | witty_glove_syh5ltdkh6 | command | Starting | Link to Azure Machine Learning studio |
Result
- A job “Hello World with experiments” is created under the experiment name “data_science”. It seems this is the default name of the experiment if we don’t indicate in the
command
function (see screenshot)
- The job has code and logs registered
start_run receives experiment
%%writefile hello_world_experiments.py
import mlflow
from hello_world_core import hello_world, parse_args
def main():
"""Main function of the script."""
= ["John", "Mary", "Ana"]
names for idx, name in enumerate(names):
= mlflow.create_experiment (str(idx))
experiment
mlflow.start_run(experiment)"name to log", name)
mlflow.log_param ("length", len(name))
mlflow.log_metric (
mlflow.end_run ()
hello_world (name)
if __name__ == "__main__":
main()
Overwriting hello_world_experiments.py
# configure job
= command(
job =f"./", # location of source code: in this case, the root folder
code="python hello_world_experiments.py",
command="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
environment="Hello World with experiments 2",
display_name
)
# submit job
ml_client.create_or_update(job)
Uploading data_science (12.73 MBs): 100%|██████████| 12725904/12725904 [00:00<00:00, 16250029.70it/s]
Experiment | Name | Type | Status | Details Page |
data_science | good_helmet_wgcgzlvs99 | command | Starting | Link to Azure Machine Learning studio |
Result
This experiment failed, since the call to mlflow.start_run (experiment)
is incorrect. The correct call is mlflow.start_run(experiment_id=experiment_id)
start_run receives under experiment_id name
%%writefile hello_world_experiments_id.py
import mlflow
from hello_world_core import hello_world, parse_args
def main():
"""Main function of the script."""
= ["John", "Mary", "Ana"]
names for idx, name in enumerate(names):
= mlflow.create_experiment (str(idx))
experiment_id =experiment_id)
mlflow.start_run(experiment_id"name to log", name)
mlflow.log_param ("length", len(name))
mlflow.log_metric (
mlflow.end_run ()
hello_world (name)
if __name__ == "__main__":
main()
Writing hello_world_experiments_id.py
# configure job
= command(
job =f"./", # location of source code: in this case, the root folder
code="python hello_world_experiments_id.py",
command="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
environment="Hello World with experiment_id",
display_name
)
# submit job
ml_client.create_or_update(job)
Uploading data_science (12.74 MBs): 100%|██████████| 12741018/12741018 [00:02<00:00, 5305432.15it/s]
Experiment | Name | Type | Status | Details Page |
data_science | lime_snail_kdddyl016h | command | Starting | Link to Azure Machine Learning studio |
Result
The code is uploaded to an experiment called “data_science”. This experiment makes use of the first parameter value: name="John"
. The remaining experiments (1
, and 2
), are created separately for parameter values "Mary"
and "Ana"
, without code being uploaded to them.
using separate runs instead
%%writefile hello_world_runs.py
import mlflow
from hello_world_core import hello_world, parse_args
def main():
"""Main function of the script."""
= ["John", "Mary", "Ana"]
names = mlflow.create_experiment("experiment1")
experiment_id for idx, name in enumerate(names):
=str(idx), experiment_id=experiment_id)
mlflow.start_run(run_name"name to log", name)
mlflow.log_param ("length", len(name))
mlflow.log_metric (
mlflow.end_run ()
hello_world (name)
if __name__ == "__main__":
main()
Writing hello_world_runs.py
# configure job
= command(
job =f"./", # location of source code: in this case, the root folder
code="python hello_world_runs.py",
command="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
environment="Hello World with runs",
display_name
)
# submit job
ml_client.create_or_update(job)
Uploading data_science (12.75 MBs): 100%|██████████| 12749252/12749252 [00:00<00:00, 18741643.65it/s]
Experiment | Name | Type | Status | Details Page |
data_science | olive_shelf_r4fzsl1f0d | command | Starting | Link to Azure Machine Learning studio |
Result
Two runs are created under a job with experiment name “experiment1” and latest_job name
1
and2
:The metric values for these can be compared using graphics:
- There is still a job created under experiment name
data_science
. This job contains result of using first parameter value, code and logs. But it cannot be compared.
Separate runs + experiment in command
%%writefile hello_world_runs_command.py
import mlflow
from hello_world_core import hello_world, parse_args
def main():
"""Main function of the script."""
= ["John", "Mary", "Ana"]
names for idx, name in enumerate(names):
=str(idx))
mlflow.start_run(run_name"name to log", name)
mlflow.log_param ("length", len(name))
mlflow.log_metric (
mlflow.end_run ()
hello_world (name)
if __name__ == "__main__":
main()
Writing hello_world_runs_command.py
# configure job
= command(
job =f"./", # location of source code: in this case, the root folder
code="python hello_world_runs_command.py",
command="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
environment="hw_runs_command",
experiment_name="Hello World with runs + command",
display_name
)
# submit job
ml_client.create_or_update(job)
Class AutoDeleteSettingSchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class AutoDeleteConditionSchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class BaseAutoDeleteSettingSchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class IntellectualPropertySchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class ProtectionLevelSchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Class BaseIntellectualPropertySchema: This is an experimental class, and may change at any time. Please see https://aka.ms/azuremlexperimental for more information.
Uploading data_science (17.09 MBs): 100%|██████████| 17092597/17092597 [00:00<00:00, 23325862.31it/s]
Experiment | Name | Type | Status | Details Page |
hw_runs_command | jolly_bone_c07ncly80l | command | Starting | Link to Azure Machine Learning studio |
Result
- We have the three runs under the same experiment, and we can compare their metrics:
Logging images
%%writefile hello_world_images.py
import mlflow
from hello_world_core import hello_world, parse_args
import matplotlib.pyplot as plt
def main():
"""Main function of the script."""
= ["John", "Mary", "Ana"]
names for idx, name in enumerate(names):
=str(idx))
mlflow.start_run(run_name"name to log", name)
mlflow.log_param ("length", len(name))
mlflow.log_metric (
= plt.subplots()
fig, ax 0+10*len(name), 1+10*len(name)], [2+10*len(name), 3+10*len(name)])
ax.plot([f"figure_{idx}.png")
mlflow.log_figure(fig,
mlflow.end_run ()
hello_world (name)
if __name__ == "__main__":
main()
Overwriting hello_world_images.py
# configure job
= command(
job =f"./", # location of source code: in this case, the root folder
code="python hello_world_images.py",
command="AzureML-sklearn-1.0-ubuntu20.04-py38-cpu@latest",
environment="hw_images",
experiment_name="Hello World with images",
display_name
)
= "jaumecpu"
job.settings.default_compute
# submit job
ml_client.create_or_update(job)
Warnings: [settings: Unknown field.]
Warnings: [settings: Unknown field.]
Uploading data_science (16.39 MBs): 100%|██████████| 16392540/16392540 [00:01<00:00, 14278614.03it/s]
Experiment | Name | Type | Status | Details Page |
hw_images | shy_island_fh9jg0r6nf | command | Starting | Link to Azure Machine Learning studio |
Result
Using interactive
# Set the experiment
"mlflow-interactive-4")
mlflow.set_experiment(
= ["John", "Mary", "Ana"]
names for idx, name in enumerate(names):
=str(idx)+"-bis-2")
mlflow.start_run(run_name"name to log", name)
mlflow.log_param ("length", len(name))
mlflow.log_metric (
= plt.subplots()
fig, ax 0+10*len(name), 1+10*len(name)], [2+10*len(name), 3+10*len(name)])
ax.plot([f"figure_{idx}.png")
mlflow.log_figure(fig,
mlflow.end_run ()
2024/06/04 09:05:04 INFO mlflow.tracking.fluent: Experiment with name 'mlflow-interactive-4' does not exist. Creating a new experiment.
Multiple metrics
"multiple-metrics")
mlflow.set_experiment(= MlflowClient()
client
= ["John", "Mary", "Ana"]
names for idx, name in enumerate(names):
= mlflow.start_run(run_name=str(idx)+"-bis-2")
current_run "name to log", name)
mlflow.log_param ("length", len(name))
mlflow.log_metric (
= np.array([1, 2, 3, 2, 1, 2, 3, 2, 1])+len(name)*1000
list_to_log
client.log_batch(
current_run.info.run_id, =[
metrics="sample_list", value=val, timestamp=int(time.time() * 1000), step=0)
Metric(keyfor val in list_to_log
]
)
= plt.subplots()
fig, ax 1,2,4,8,16,32,64,128]) + len(name)*1000)
ax.plot(np.array([f"figure_{idx}.png")
mlflow.log_figure(fig,
mlflow.end_run ()
Using dataset
auto-log, not using evaluate
without set_experiment or run
# enable autologging
mlflow.autolog()
# read data
= "https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv"
dataset_source_url = pd.read_csv(dataset_source_url, delimiter=";")
df
# split data
= df["quality"]
y = df.drop("quality", axis=1)
X = train_test_split(
X_train, X_test, y_train, y_test =0.33, random_state=17
X, y, test_size
)
# train model
= RandomForestClassifier ()
model
model.fit (X_train, y_train)
# evaluate
= model.predict(X_test)
y_hat = np.average(y_hat == y_test)
acc print('Accuracy:', acc)
2024/06/04 13:32:06 INFO mlflow.tracking.fluent: Autologging successfully enabled for sklearn.
2024/06/04 13:32:06 INFO mlflow.utils.autologging_utils: Created MLflow autologging run with ID '79f7182e-22da-49bc-9ffb-5d4d3ab19172', which will track hyperparameters, performance metrics, model artifacts, and lineage information for the current sklearn workflow
2024/06/04 13:32:14 WARNING mlflow.sklearn: Failed to log evaluation dataset information to MLflow Tracking. Reason: BAD_REQUEST: Response: {'Error': {'Code': 'UserError', 'Severity': None, 'Message': 'Cannot log the same dataset with different context', 'MessageFormat': None, 'MessageParameters': None, 'ReferenceCode': None, 'DetailsUri': None, 'Target': None, 'Details': [], 'InnerError': None, 'DebugInfo': None, 'AdditionalInfo': None}, 'Correlation': {'operation': '8bf21ee6ca6b0a22621d463962cdb6c7', 'request': 'bb3b9eee5cc179d2'}, 'Environment': 'eastus2', 'Location': 'eastus2', 'Time': '2024-06-04T13:32:14.3398324+00:00', 'ComponentName': 'mlflow', 'statusCode': 400, 'error_code': 'BAD_REQUEST'}
Accuracy: 0.6611008039579468
with set_experiment or run
"auto-log-diabetes")
mlflow.set_experiment(= mlflow.start_run(run_name="single-run")
current_run
# enable autologging
mlflow.autolog()
# read data
= "https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv"
dataset_source_url = pd.read_csv(dataset_source_url, delimiter=";")
df
# split data
= df["quality"]
y = df.drop("quality", axis=1)
X = train_test_split(
X_train, X_test, y_train, y_test =0.33, random_state=17
X, y, test_size
)
# train model
= RandomForestClassifier ()
model
model.fit (X_train, y_train)
# evaluate
= model.predict(X_test)
y_hat = np.average(y_hat == y_test)
acc print('Accuracy:', acc)
mlflow.end_run()
2024/06/04 13:42:27 INFO mlflow.tracking.fluent: Autologging successfully enabled for sklearn.
2024/06/04 13:42:34 WARNING mlflow.sklearn: Failed to log evaluation dataset information to MLflow Tracking. Reason: BAD_REQUEST: Response: {'Error': {'Code': 'UserError', 'Severity': None, 'Message': 'Cannot log the same dataset with different context', 'MessageFormat': None, 'MessageParameters': None, 'ReferenceCode': None, 'DetailsUri': None, 'Target': None, 'Details': [], 'InnerError': None, 'DebugInfo': None, 'AdditionalInfo': None}, 'Correlation': {'operation': '2ca9d0147eefa2c27982cd511b017688', 'request': '0c999aaf8b0221f2'}, 'Environment': 'eastus2', 'Location': 'eastus2', 'Time': '2024-06-04T13:42:34.8823005+00:00', 'ComponentName': 'mlflow', 'statusCode': 400, 'error_code': 'BAD_REQUEST'}
Accuracy: 0.6635745207173779
with evaluate
"auto-log-evaluate")
mlflow.set_experiment(= mlflow.start_run(run_name="single-run")
current_run
# enable autologging
mlflow.autolog()
# read data
= "https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv"
dataset_source_url = pd.read_csv(dataset_source_url, delimiter=";")
df
# split data
= df["quality"]
y = df.drop("quality", axis=1)
X = train_test_split(
X_train, X_test, y_train, y_test =0.33, random_state=17
X, y, test_size
)
# train model
= RandomForestClassifier ()
model
model.fit (X_train, y_train)
# evaluate
= model.predict(X_test)
y_hat
# --------------------------------------
= X_test
eval_data "label"] = y_test
eval_data[
# Assign the decoded predictions to the Evaluation Dataset
"predictions"] = y_hat
eval_data[
# Create the PandasDataset for use in mlflow evaluate
= mlflow.data.from_pandas(
pd_dataset ="predictions", targets="label"
eval_data, predictions
)= mlflow.evaluate(data=pd_dataset, predictions=None, model_type="classifier")
result #result = mlflow.evaluate(model=model, predictions=None, model_type="classifier")
# -------------------------------------
with multiple runs
#mlflow.end_run()
"shap-extra-runs")
mlflow.set_experiment(
# enable autologging
mlflow.autolog()# read data
= "https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv"
dataset_source_url = pd.read_csv(dataset_source_url, delimiter=";")
df = mlflow.data.from_pandas(df, source=dataset_source_url)
dataset: PandasDataset
# split data
= df["quality"]
y = df.drop("quality", axis=1)
X
= X[(y==6) | (y==5)]
X = y[(y==6) | (y==5)]
y ==6]=1
y[y==5]=0
y[y
= train_test_split(
X_train, X_test, y_train, y_test =0.33, random_state=17
X, y, test_size
)
# hp
= [25, 50, 100, 200]
n_estimators_values
for idx, n_estimators in enumerate (n_estimators_values):
= mlflow.start_run(run_name=f"run_{idx}")
current_run
# train model
= RandomForestClassifier (n_estimators=n_estimators)
model
model.fit (X_train, y_train)
# --------------------------------------
# evaluate
#y_hat = model.predict(X_test)
= model.predict_proba(X_test)[:, 1]
y_hat = precision_recall_curve (y_test, y_hat)
precision, recall, thresholds = np.append (thresholds, values=1.0)
thresholds =thresholds[precision>0.7].min()
threshold= (y_hat>threshold).astype (int)
y_hat
# --------------------------------------
= X_test.copy()
eval_data "label"] = y_test
eval_data[
# Assign the decoded predictions to the Evaluation Dataset
"predictions"] = y_hat
eval_data[
# Create the PandasDataset for use in mlflow evaluate
= mlflow.data.from_pandas(
pd_dataset
eval_data, ="predictions",
predictions="label",
targets=dataset_source_url,
source="wine-quality-white-3",
name
)
= mlflow.evaluate(data=pd_dataset, predictions=None, model_type="classifier")
result # -------------------------------------
mlflow.end_run()
2024/06/05 08:38:38 INFO mlflow.tracking.fluent: Experiment with name 'shap-extra-runs' does not exist. Creating a new experiment.
2024/06/05 08:38:38 DEBUG mlflow.utils.autologging_utils: Called autolog() method for mlflow autologging with args '()' and kwargs '{'log_input_examples': False, 'log_model_signatures': True, 'log_models': True, 'log_datasets': True, 'disable': False, 'exclusive': False, 'disable_for_unsupported_versions': False, 'silent': False, 'extra_tags': None}'
2024/06/05 08:38:38 DEBUG mlflow.utils.autologging_utils: Called autolog() method for sklearn autologging with args '()' and kwargs '{'log_input_examples': False, 'log_model_signatures': True, 'log_models': True, 'log_datasets': True, 'disable': False, 'exclusive': False, 'disable_for_unsupported_versions': False, 'silent': False, 'max_tuning_runs': 5, 'log_post_training_metrics': True, 'serialization_format': 'cloudpickle', 'registered_model_name': None, 'pos_label': None, 'extra_tags': None}'
2024/06/05 08:38:40 DEBUG mlflow.utils.gorilla: Patch fn on destination already existed. Overwrite old patch.
2024/06/05 08:38:40 DEBUG mlflow.utils.gorilla: Patch fn on destination already existed. Overwrite old patch.
2024/06/05 08:38:40 DEBUG mlflow.utils.gorilla: Patch fn on destination already existed. Overwrite old patch.
2024/06/05 08:38:40 DEBUG mlflow.utils.gorilla: Patch fn on destination already existed. Overwrite old patch.
2024/06/05 08:38:40 DEBUG mlflow.utils.gorilla: Patch fn on destination already existed. Overwrite old patch.
2024/06/05 08:38:40 DEBUG mlflow.utils.gorilla: Patch fn on destination already existed. Overwrite old patch.
2024/06/05 08:38:40 INFO mlflow.tracking.fluent: Autologging successfully enabled for sklearn.
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.fit' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64)' and kwargs '{}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64)' and kwargs '{}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 0., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 0., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 0., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 0., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 3., ..., 0., 3., 0.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 3., ..., 0., 3., 0.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 3., ..., 0., 3., 0.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 3., ..., 0., 3., 0.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 1., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:40 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 1., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 1., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 1., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 2., 5., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 2., 5., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 2., 5., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 2., 5., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 0., ..., 2., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 0., ..., 2., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 0., ..., 2., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 0., ..., 2., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 0., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 0., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 0., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 0., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 4., 2., ..., 3., 2., 4.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 4., 2., ..., 3., 2., 4.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 4., 2., ..., 3., 2., 4.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 4., 2., ..., 3., 2., 4.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 3., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 3., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 3., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 3., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 0., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 0., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 0., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 0., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 2., 0., ..., 2., 1., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 2., 0., ..., 2., 1., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 2., 0., ..., 2., 1., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 2., 0., ..., 2., 1., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 2., ..., 2., 1., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 2., ..., 2., 1., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 2., ..., 2., 1., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 2., ..., 2., 1., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 2., ..., 0., 1., 2.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 2., ..., 0., 1., 2.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 2., ..., 0., 1., 2.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 2., ..., 0., 1., 2.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 3., 0., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 3., 0., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 3., 0., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 3., 0., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 2., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 2., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 2., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 2., 2., 0.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 3., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 3., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 3., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 3., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64)' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:41 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.precision_score' for sklearn autologging with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.precision_score' for sklearn autologging. Original function was invoked with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.precision_score' for sklearn autologging. Original function was invoked with with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.precision_score' for sklearn autologging completed successfully. Patched ML API was called with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.recall_score' for sklearn autologging with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.recall_score' for sklearn autologging. Original function was invoked with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.recall_score' for sklearn autologging. Original function was invoked with with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.recall_score' for sklearn autologging completed successfully. Patched ML API was called with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.f1_score' for sklearn autologging with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.f1_score' for sklearn autologging. Original function was invoked with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.f1_score' for sklearn autologging. Original function was invoked with with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.f1_score' for sklearn autologging completed successfully. Patched ML API was called with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'pos_label': None, 'average': 'weighted', 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.accuracy_score' for sklearn autologging with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'normalize': True, 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.accuracy_score' for sklearn autologging. Original function was invoked with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'normalize': True, 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.accuracy_score' for sklearn autologging. Original function was invoked with with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'normalize': True, 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.accuracy_score' for sklearn autologging completed successfully. Patched ML API was called with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([0, 1, 1, ..., 0, 1, 1]), 'normalize': True, 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.log_loss' for sklearn autologging with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([[0.84, 0.16],
[0. , 1. ],
[0.04, 0.96],
...,
[0.8 , 0.2 ],
[0.04, 0.96],
[0. , 1. ]]), 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.log_loss' for sklearn autologging. Original function was invoked with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([[0.84, 0.16],
[0. , 1. ],
[0.04, 0.96],
...,
[0.8 , 0.2 ],
[0.04, 0.96],
[0. , 1. ]]), 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.log_loss' for sklearn autologging. Original function was invoked with with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([[0.84, 0.16],
[0. , 1. ],
[0.04, 0.96],
...,
[0.8 , 0.2 ],
[0.04, 0.96],
[0. , 1. ]]), 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.log_loss' for sklearn autologging completed successfully. Patched ML API was called with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_pred': array([[0.84, 0.16],
[0. , 1. ],
[0.04, 0.96],
...,
[0.8 , 0.2 ],
[0.04, 0.96],
[0. , 1. ]]), 'sample_weight': None}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.roc_auc_score' for sklearn autologging with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_score': array([0.16, 1. , 0.96, ..., 0.2 , 0.96, 1. ]), 'average': 'weighted', 'sample_weight': None, 'multi_class': 'ovo'}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.roc_auc_score' for sklearn autologging. Original function was invoked with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_score': array([0.16, 1. , 0.96, ..., 0.2 , 0.96, 1. ]), 'average': 'weighted', 'sample_weight': None, 'multi_class': 'ovo'}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.roc_auc_score' for sklearn autologging. Original function was invoked with with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_score': array([0.16, 1. , 0.96, ..., 0.2 , 0.96, 1. ]), 'average': 'weighted', 'sample_weight': None, 'multi_class': 'ovo'}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.roc_auc_score' for sklearn autologging completed successfully. Patched ML API was called with args '()' and kwargs '{'y_true': 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, 'y_score': array([0.16, 1. , 0.96, ..., 0.2 , 0.96, 1. ]), 'average': 'weighted', 'sample_weight': None, 'multi_class': 'ovo'}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:42 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:43 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.score' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, None)' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.score' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, None)' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.accuracy_score' for sklearn autologging with args '(2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, array([0, 1, 1, ..., 0, 1, 1]))' and kwargs '{'sample_weight': None}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.accuracy_score' for sklearn autologging. Original function was invoked with args '(2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, array([0, 1, 1, ..., 0, 1, 1]))' and kwargs '{'sample_weight': None}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.accuracy_score' for sklearn autologging. Original function was invoked with with args '(2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, array([0, 1, 1, ..., 0, 1, 1]))' and kwargs '{'sample_weight': None}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<module 'sklearn.metrics' from '/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/__init__.py'>.accuracy_score' for sklearn autologging completed successfully. Patched ML API was called with args '(2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, array([0, 1, 1, ..., 0, 1, 1]))' and kwargs '{'sample_weight': None}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.score' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, None)' and kwargs '{}'
2024/06/05 08:38:45 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.score' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64, None)' and kwargs '{}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6 )' and kwargs '{}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6 )' and kwargs '{}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6 )' and kwargs '{}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6 )' and kwargs '{}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[8.3000e+00, 3.3000e-01, 4.3000e-01, 9.2000e+00, 4.6000e-02,
2.2000e+01, 1.2600e+02, 9.9820e-01, 3.3800e+00, 4.7000e-01,
9.3000e+00],
[7.3000e+00, 2.2000e-01, 3.7000e-01, 1.4300e+01, 6.3000e-02,
4.8000e+01, 1.9100e+02, 9.9780e-01, 2.8900e+00, 3.8000e-01,
9.0000e+00],
[8.1000e+00, 2.6000e-01, 2.7000e-01, 4.3000e+00, 3.0000e-02,
4.3000e+01, 1.2300e+02, 9.9212e-01, 3.1600e+00, 3.3000e-01,
1.1200e+01],
[6.3000e+00, 1.7000e-01, 3.2000e-01, 4.2000e+00, 4.0000e-02,
3.7000e+01, 1.1700e+02, 9.9182e-01, 3.2400e+00, 4.3000e-01,
1.1300e+01],
[7.2000e+00, 2.9000e-01, 5.3000e-01, 1.8150e+01, 4.7000e-02,
5.9000e+01, 1.8200e+02, 9.9920e-01, 3.0900e+00, 5.2000e-01,
9.6000e+00]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6 )' and kwargs '{}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6 )' and kwargs '{}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6 )' and kwargs '{}'
2024/06/05 08:38:46 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6 )' and kwargs '{}'
2024/06/05 08:38:50 WARNING mlflow.utils.autologging_utils: MLflow autologging encountered a warning: "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils."
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64)' and kwargs '{}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2438 6.9 0.43 0.28 9.4 0.056
2997 6.9 0.25 0.33 1.2 0.035
3818 5.1 0.35 0.26 6.8 0.034
773 6.1 0.27 0.30 16.7 0.039
1452 7.8 0.43 0.49 13.0 0.033
... ... ... ... ... ...
3974 6.5 0.29 0.52 7.9 0.049
1949 6.7 0.31 0.44 6.7 0.054
1013 6.2 0.25 0.47 11.6 0.048
882 7.4 0.26 0.43 6.0 0.022
3563 7.0 0.48 0.12 4.5 0.050
free sulfur dioxide total sulfur dioxide density pH sulphates \
2438 29.0 183.0 0.99594 3.17 0.43
2997 35.0 158.0 0.99082 3.02 0.58
3818 36.0 120.0 0.99188 3.38 0.40
773 49.0 172.0 0.99985 3.40 0.45
1452 37.0 158.0 0.99550 3.14 0.35
... ... ... ... ... ...
3974 35.0 192.0 0.99551 3.16 0.51
1949 29.0 160.0 0.99520 3.04 0.44
1013 62.0 210.0 0.99680 3.19 0.50
882 22.0 125.0 0.99280 3.13 0.55
3563 23.0 86.0 0.99398 2.86 0.35
alcohol
2438 9.4
2997 11.3
3818 11.5
773 9.4
1452 11.3
... ...
3974 9.5
1949 9.6
1013 9.5
882 11.5
3563 9.0
[1207 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2438 6.9 0.43 0.28 9.4 0.056
2997 6.9 0.25 0.33 1.2 0.035
3818 5.1 0.35 0.26 6.8 0.034
773 6.1 0.27 0.30 16.7 0.039
1452 7.8 0.43 0.49 13.0 0.033
... ... ... ... ... ...
3974 6.5 0.29 0.52 7.9 0.049
1949 6.7 0.31 0.44 6.7 0.054
1013 6.2 0.25 0.47 11.6 0.048
882 7.4 0.26 0.43 6.0 0.022
3563 7.0 0.48 0.12 4.5 0.050
free sulfur dioxide total sulfur dioxide density pH sulphates \
2438 29.0 183.0 0.99594 3.17 0.43
2997 35.0 158.0 0.99082 3.02 0.58
3818 36.0 120.0 0.99188 3.38 0.40
773 49.0 172.0 0.99985 3.40 0.45
1452 37.0 158.0 0.99550 3.14 0.35
... ... ... ... ... ...
3974 35.0 192.0 0.99551 3.16 0.51
1949 29.0 160.0 0.99520 3.04 0.44
1013 62.0 210.0 0.99680 3.19 0.50
882 22.0 125.0 0.99280 3.13 0.55
3563 23.0 86.0 0.99398 2.86 0.35
alcohol
2438 9.4
2997 11.3
3818 11.5
773 9.4
1452 11.3
... ...
3974 9.5
1949 9.6
1013 9.5
882 11.5
3563 9.0
[1207 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1503144821), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1756899350), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=503712351), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1830641452), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=564291510), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1350014931), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=355903341), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1608240563), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1514978177), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1933344888), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2139888806), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=389292234), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=93203662), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=165299253), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=338853025), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1321339288), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=153652917), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1965061364), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=628206093), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1894823798), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1287369901), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1266790438), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1853005276), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1753139428), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=358291864), array([[ 6.9 , 0.43, 0.28, ..., 3.17, 0.43, 9.4 ],
[ 6.9 , 0.25, 0.33, ..., 3.02, 0.58, 11.3 ],
[ 5.1 , 0.35, 0.26, ..., 3.38, 0.4 , 11.5 ],
...,
[ 6.2 , 0.25, 0.47, ..., 3.19, 0.5 , 9.5 ],
[ 7.4 , 0.26, 0.43, ..., 3.13, 0.55, 11.5 ],
[ 7. , 0.48, 0.12, ..., 2.86, 0.35, 9. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2438 6.9 0.43 0.28 9.4 0.056
2997 6.9 0.25 0.33 1.2 0.035
3818 5.1 0.35 0.26 6.8 0.034
773 6.1 0.27 0.30 16.7 0.039
1452 7.8 0.43 0.49 13.0 0.033
... ... ... ... ... ...
3974 6.5 0.29 0.52 7.9 0.049
1949 6.7 0.31 0.44 6.7 0.054
1013 6.2 0.25 0.47 11.6 0.048
882 7.4 0.26 0.43 6.0 0.022
3563 7.0 0.48 0.12 4.5 0.050
free sulfur dioxide total sulfur dioxide density pH sulphates \
2438 29.0 183.0 0.99594 3.17 0.43
2997 35.0 158.0 0.99082 3.02 0.58
3818 36.0 120.0 0.99188 3.38 0.40
773 49.0 172.0 0.99985 3.40 0.45
1452 37.0 158.0 0.99550 3.14 0.35
... ... ... ... ... ...
3974 35.0 192.0 0.99551 3.16 0.51
1949 29.0 160.0 0.99520 3.04 0.44
1013 62.0 210.0 0.99680 3.19 0.50
882 22.0 125.0 0.99280 3.13 0.55
3563 23.0 86.0 0.99398 2.86 0.35
alcohol
2438 9.4
2997 11.3
3818 11.5
773 9.4
1452 11.3
... ...
3974 9.5
1949 9.6
1013 9.5
882 11.5
3563 9.0
[1207 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:38:53 WARNING mlflow.sklearn: Failed to log evaluation dataset information to MLflow Tracking. Reason: BAD_REQUEST: Response: {'Error': {'Code': 'UserError', 'Severity': None, 'Message': 'Cannot log the same dataset with different context', 'MessageFormat': None, 'MessageParameters': None, 'ReferenceCode': None, 'DetailsUri': None, 'Target': None, 'Details': [], 'InnerError': None, 'DebugInfo': None, 'AdditionalInfo': None}, 'Correlation': {'operation': '331680a9b9642fd9b0d7eddc7cfd549f', 'request': 'db2697e850a5f993'}, 'Environment': 'eastus2', 'Location': 'eastus2', 'Time': '2024-06-05T08:38:53.5929186+00:00', 'ComponentName': 'mlflow', 'statusCode': 400, 'error_code': 'BAD_REQUEST'}
2024/06/05 08:38:53 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=25), fixed acidity volatile acidity citric acid residual sugar chlorides \
2438 6.9 0.43 0.28 9.4 0.056
2997 6.9 0.25 0.33 1.2 0.035
3818 5.1 0.35 0.26 6.8 0.034
773 6.1 0.27 0.30 16.7 0.039
1452 7.8 0.43 0.49 13.0 0.033
... ... ... ... ... ...
3974 6.5 0.29 0.52 7.9 0.049
1949 6.7 0.31 0.44 6.7 0.054
1013 6.2 0.25 0.47 11.6 0.048
882 7.4 0.26 0.43 6.0 0.022
3563 7.0 0.48 0.12 4.5 0.050
free sulfur dioxide total sulfur dioxide density pH sulphates \
2438 29.0 183.0 0.99594 3.17 0.43
2997 35.0 158.0 0.99082 3.02 0.58
3818 36.0 120.0 0.99188 3.38 0.40
773 49.0 172.0 0.99985 3.40 0.45
1452 37.0 158.0 0.99550 3.14 0.35
... ... ... ... ... ...
3974 35.0 192.0 0.99551 3.16 0.51
1949 29.0 160.0 0.99520 3.04 0.44
1013 62.0 210.0 0.99680 3.19 0.50
882 22.0 125.0 0.99280 3.13 0.55
3563 23.0 86.0 0.99398 2.86 0.35
alcohol
2438 9.4
2997 11.3
3818 11.5
773 9.4
1452 11.3
... ...
3974 9.5
1949 9.6
1013 9.5
882 11.5
3563 9.0
[1207 rows x 11 columns])' and kwargs '{}'
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlflow/data/dataset_source_registry.py:150: UserWarning: Failed to determine whether UCVolumeDatasetSource can resolve source information for 'https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv'. Exception:
return _dataset_source_registry.resolve(
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlflow/types/utils.py:394: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values <https://www.mlflow.org/docs/latest/models.html#handling-integers-with-missing-values>`_ for more details.
warnings.warn(
2024/06/05 08:38:53 DEBUG mlflow.models.evaluation.base: Evaluating the model with the default evaluator.
2024/06/05 08:38:53 INFO mlflow.models.evaluation.default_evaluator: The evaluation dataset is inferred as binary dataset, positive label is 1, negative label is 0.
2024/06/05 08:38:53 INFO mlflow.models.evaluation.default_evaluator: Testing metrics on first row...
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
2024/06/05 08:38:57 INFO mlflow.models.evaluation.default_evaluator: Shap explainer PermutationExplainer is used.
2024/06/05 08:39:01 WARNING mlflow.models.evaluation.default_evaluator: Shap evaluation failed. Reason: TypeError("'NoneType' object is not callable"). Set logging level to DEBUG to see the full traceback.
2024/06/05 08:39:01 DEBUG mlflow.models.evaluation.default_evaluator:
Traceback (most recent call last):
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlflow/models/evaluation/default_evaluator.py", line 959, in _log_model_explainability
shap_values = explainer(sampled_X)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/shap/explainers/_permutation.py", line 77, in __call__
return super().__call__(
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/shap/explainers/_explainer.py", line 266, in __call__
row_result = self.explain_row(
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/shap/explainers/_permutation.py", line 133, in explain_row
outputs = fm(masks, zero_index=0, batch_size=batch_size)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/shap/utils/_masked_model.py", line 60, in __call__
return self._delta_masking_call(masks, zero_index=zero_index, batch_size=batch_size)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/shap/utils/_masked_model.py", line 206, in _delta_masking_call
outputs = self.model(*subset_masked_inputs)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/shap/models/_model.py", line 21, in __call__
out = self.inner_model(*args)
File "/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlflow/models/evaluation/default_evaluator.py", line 750, in _shap_predict_fn
return predict_fn(_get_dataframe_with_renamed_columns(x, feature_names))
TypeError: 'NoneType' object is not callable
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.fit' for sklearn autologging with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64)' and kwargs '{}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64)' and kwargs '{}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 2., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 2., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 2., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 2., ..., 1., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 0., ..., 3., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 0., ..., 3., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 0., ..., 3., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 0., ..., 3., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 5., ..., 0., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 5., ..., 0., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 5., ..., 0., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 5., ..., 0., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 0., 3., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 0., 3., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 0., 3., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 0., 3., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 2., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 2., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 2., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 2., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 1., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 1., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 1., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 1., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 0., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 0., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 0., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 0., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 2., 2.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 2., 2.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 2., 2.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 2., 2.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 2., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 2., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 2., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 2., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:02 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 3., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 3., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 3., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 3., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 1., 3., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 1., 3., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 1., 3., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([3., 1., 3., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 1., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 1., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 1., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 1., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 1., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 2., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 2., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 2., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 2., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([5., 2., 1., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([5., 2., 1., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([5., 2., 1., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([5., 2., 1., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 2., ..., 2., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 2., ..., 2., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 2., ..., 2., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 2., ..., 2., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 0., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 0., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 0., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 0., 1., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 2., 3., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 2., 3., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 2., 3., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 2., 3., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 2., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 2., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 2., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 3., 2., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 1., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 1., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 1., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 1., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 1., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 1., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 1., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 1., ..., 0., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 1., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 1., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 1., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 1., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 1., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 2., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=344094850), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=344094850), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=344094850), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=344094850), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 2., ..., 1., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1341651672), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1341651672), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1341651672), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1341651672), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2099191760), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2099191760), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2099191760), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2099191760), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 1., ..., 1., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=151921307), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 0., ..., 4., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=151921307), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 0., ..., 4., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=151921307), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 0., ..., 4., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=151921307), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 1., 0., ..., 4., 0., 3.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178060837), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178060837), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178060837), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178060837), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 0., ..., 2., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1466338877), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1466338877), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1466338877), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1466338877), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 1., 0., ..., 0., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2016131071), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 0., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2016131071), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 0., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2016131071), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 0., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2016131071), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 0., 0., ..., 0., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=506181667), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=506181667), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=506181667), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=506181667), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 0., 0., ..., 1., 0., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1373991024), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1373991024), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1373991024), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1373991024), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([2., 2., 0., ..., 1., 0., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1200344041), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 2., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1200344041), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 2., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1200344041), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 2., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1200344041), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 1., ..., 2., 1., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178589052), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 2., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178589052), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 2., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178589052), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 2., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178589052), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([1., 2., 2., ..., 0., 0., 2.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1063779164), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 2., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1063779164), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 2., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1063779164), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 2., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1063779164), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 1., 0., ..., 2., 2., 1.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1140366423), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 1., ..., 3., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1140366423), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 1., ..., 3., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1140366423), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 1., ..., 3., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1140366423), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 0., 1., ..., 3., 2., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=252728799), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=252728799), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=252728799), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.fit' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=252728799), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32), array([[0.],
[1.],
[1.],
...,
[0.],
[1.],
[1.]]))' and kwargs '{'sample_weight': array([0., 2., 2., ..., 0., 1., 0.]), 'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.fit' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns], 2046 0
356 1
3541 1
3114 1
469 0
..
527 1
1932 1
2941 0
4468 1
3643 1
Name: quality, Length: 2448, dtype: int64)' and kwargs '{}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=344094850), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=344094850), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=344094850), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=344094850), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1341651672), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1341651672), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1341651672), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1341651672), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2099191760), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2099191760), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2099191760), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2099191760), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=151921307), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=151921307), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=151921307), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=151921307), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178060837), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178060837), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178060837), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178060837), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1466338877), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1466338877), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1466338877), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1466338877), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2016131071), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2016131071), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2016131071), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2016131071), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=506181667), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=506181667), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=506181667), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=506181667), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1373991024), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1373991024), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1373991024), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1373991024), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1200344041), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1200344041), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1200344041), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1200344041), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178589052), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178589052), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178589052), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=178589052), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1063779164), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1063779164), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1063779164), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1063779164), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1140366423), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1140366423), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1140366423), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1140366423), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=252728799), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=252728799), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=252728799), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=252728799), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:03 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging. Original function was invoked with with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict' for sklearn autologging completed successfully. Patched ML API was called with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.ensemble._forest.RandomForestClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(RandomForestClassifier(n_estimators=50), fixed acidity volatile acidity citric acid residual sugar chlorides \
2046 8.3 0.33 0.43 9.20 0.046
356 7.3 0.22 0.37 14.30 0.063
3541 8.1 0.26 0.27 4.30 0.030
3114 6.3 0.17 0.32 4.20 0.040
469 7.2 0.29 0.53 18.15 0.047
... ... ... ... ... ...
527 6.1 0.28 0.22 1.80 0.034
1932 9.2 0.71 0.23 6.20 0.042
2941 7.2 0.30 0.30 8.70 0.022
4468 6.2 0.21 0.24 1.20 0.051
3643 6.8 0.19 0.33 4.90 0.047
free sulfur dioxide total sulfur dioxide density pH sulphates \
2046 22.0 126.0 0.99820 3.38 0.47
356 48.0 191.0 0.99780 2.89 0.38
3541 43.0 123.0 0.99212 3.16 0.33
3114 37.0 117.0 0.99182 3.24 0.43
469 59.0 182.0 0.99920 3.09 0.52
... ... ... ... ... ...
527 32.0 116.0 0.98980 3.36 0.44
1932 15.0 93.0 0.99480 2.89 0.34
2941 14.0 111.0 0.99576 3.11 0.61
4468 31.0 95.0 0.99036 3.24 0.57
3643 42.0 130.0 0.99283 3.12 0.56
alcohol
2046 9.3
356 9.0
3541 11.2
3114 11.3
469 9.6
... ...
527 12.6
1932 10.1
2941 10.6
4468 11.3
3643 11.0
[2448 rows x 11 columns])' and kwargs '{}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=404463942), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=371735073), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1280308964), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1691931911), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=15366613), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=625235780), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1967416695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1460592344), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=670181492), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1580936450), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555519398), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=555902553), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=17349342), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1098842643), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=829209219), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=511020061), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1530305880), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1969414695), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2028964690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1604997686), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1247898094), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1751050295), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1234071210), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=480582243), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=615169054), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2050848439), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1555698918), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=26179781), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=598612526), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=323026163), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=2125981145), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=574201735), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1782971355), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=1711060770), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging completed successfully. Patched ML API was called with args '(DecisionTreeClassifier(max_features='sqrt', random_state=202539690), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Invoked patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invoked during execution of patched API '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
2024/06/05 08:39:04 DEBUG mlflow.utils.autologging_utils: Original function invocation completed successfully during execution of patched API call '<class 'sklearn.tree._classes.DecisionTreeClassifier'>.predict_proba' for sklearn autologging. Original function was invoked with with args '(DecisionTreeClassifier(max_features='sqrt', random_state=591680291), array([[ 8.3 , 0.33, 0.43, ..., 3.38, 0.47, 9.3 ],
[ 7.3 , 0.22, 0.37, ..., 2.89, 0.38, 9. ],
[ 8.1 , 0.26, 0.27, ..., 3.16, 0.33, 11.2 ],
...,
[ 7.2 , 0.3 , 0.3 , ..., 3.11, 0.61, 10.6 ],
[ 6.2 , 0.21, 0.24, ..., 3.24, 0.57, 11.3 ],
[ 6.8 , 0.19, 0.33, ..., 3.12, 0.56, 11. ]], dtype=float32))' and kwargs '{'check_input': False}'
Result
Originally, we wanted the previous run to include SHAP-based explanations and extra metrics. However, we faced two issues:
- In order to get SHAP explanations, the
mlflow.evaluate
function requires to get a model, which we didn’t introduce. The model needs to be an MLFlow model, and we need to load it from the previous run. We’ll try that below. We found this issue by setting the logger to DEBUG mode:
import logging
"mlflow").setLevel(logging.DEBUG) logging.getLogger(
- Extra metrics were a way to use a custom threshold, (precision>=0.7) for binarizing a list of predictions which were given as “probabilities” (from 0 to 1). However, the predictions provided in the
pd_dataset
object need to be binary, ormlflow.evaluate
will fail. Therefore, we need to do the binarization before calling evaluate, and not as an extra metric. - Apart from that, we failed to log the dataset used for training, which is actually the same than the one used for evaluation. I still need to figure out how to use a dataset that is only a subset of the data. Maybe the best approach is to log two inputs: one for the entire dataset and the other for the indexes of the splits.
with shap, extra metrics, and multiple runs
def f1_at_70 (eval_df, _builtin_metrics):
= eval_df["target"]
y_true = eval_df["prediction"]
y_hat = precision_recall_curve (y_true, y_hat)
precision, recall, thresholds = np.append (thresholds, values=1.0)
thresholds =thresholds[precision>0.7].min()
threshold= classification_report (y_true, y_hat>threshold, output_dict=True)
metrics return metrics['1']['f1-score']
= mlflow.models.make_metric(
f1_at_70_metric =f1_at_70,
eval_fn=True,
greater_is_better )
def fetch_logged_data(run_id):
= MlflowClient()
client = client.get_run(run_id).data
data = {k: v for k, v in data.tags.items() if not k.startswith("mlflow.")}
tags = [f.path for f in client.list_artifacts(run_id, "model")]
artifacts return data.params, data.metrics, tags, artifacts
# params, metrics, tags, artificats = fetch_logged_data (active_run.info.run_id)
# read data
= "https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv"
dataset_source_url = pd.read_csv(dataset_source_url, delimiter=";")
df =dataset_source_url)
dataset: mlflow.data.from_pandas(df, source
# split data
= df["quality"]
y = df.drop("quality", axis=1)
X
= X[(y==6) | (y==5)]
X = y[(y==6) | (y==5)]
y ==6]=1
y[y==5]=0
y[y
= train_test_split(
X_train, X_test, y_train, y_test =0.33, random_state=17
X, y, test_size )
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlflow/data/dataset_source_registry.py:150: UserWarning: Failed to determine whether UCVolumeDatasetSource can resolve source information for 'https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv'. Exception:
return _dataset_source_registry.resolve(
mlflow.end_run()
# enable autologging
mlflow.autolog()
2024/06/05 16:44:53 INFO mlflow.tracking.fluent: Autologging successfully enabled for sklearn.
= [25, 50, 100, 200]
n_estimators_values =0
idx=n_estimators_values[idx]
n_estimators=16
niter
= mlflow.start_run(run_name=f"run_{idx}-{niter}")
current_run
#mlflow.log_input(dataset, context="training")
# train model
= RandomForestClassifier (n_estimators=n_estimators)
model
model.fit (X_train, y_train)
= model.predict_proba(X_test)[:, 1]
y_hat = precision_recall_curve (y_test, y_hat)
precision, recall, thresholds = np.append (thresholds, values=1.0)
thresholds =thresholds[precision>0.7].min()
threshold= (y_hat>threshold).astype (int)
y_hat
# --------------------------------------
#eval_data = X_test.copy()
#eval_data["label"] = y_test
# Assign the decoded predictions to the Evaluation Dataset
#eval_data["predictions"] = y_hat
# Create the PandasDataset for use in mlflow evaluate
= X.copy()
X2 "label"]=y
X2[= mlflow.data.from_pandas(
pd_dataset #X.assign(label=y),
X2,#predictions="predictions",
="label",
targets=dataset_source_url,
source="wine-quality-white-15",
name
)
= f"runs:/{current_run.info.run_id}/model"
model_uri = mlflow.evaluate(model=model_uri, data=pd_dataset, predictions=None, model_type="classifier", extra_metrics=[f1_at_70_metric],
result ={"explainability_algorithm": "permutation"})
evaluator_config mlflow.end_run()
2024/06/05 16:45:02 WARNING mlflow.sklearn: Failed to log evaluation dataset information to MLflow Tracking. Reason: BAD_REQUEST: Response: {'Error': {'Code': 'UserError', 'Severity': None, 'Message': 'Cannot log the same dataset with different context', 'MessageFormat': None, 'MessageParameters': None, 'ReferenceCode': None, 'DetailsUri': None, 'Target': None, 'Details': [], 'InnerError': None, 'DebugInfo': None, 'AdditionalInfo': None}, 'Correlation': {'operation': 'e2aad112dfa9d4f79f01763ef0d7cc6f', 'request': '0a3dfd718ff25b82'}, 'Environment': 'eastus2', 'Location': 'eastus2', 'Time': '2024-06-05T16:45:02.6673091+00:00', 'ComponentName': 'mlflow', 'statusCode': 400, 'error_code': 'BAD_REQUEST'}
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlflow/data/dataset_source_registry.py:150: UserWarning: Failed to determine whether UCVolumeDatasetSource can resolve source information for 'https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv'. Exception:
return _dataset_source_registry.resolve(
Downloading artifacts: 100%|██████████| 9/9 [00:00<00:00, 14.13it/s]
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlflow/types/utils.py:394: UserWarning: Hint: Inferred schema contains integer column(s). Integer columns in Python cannot represent missing values. If your input data contains missing values at inference time, it will be encoded as floats and will cause a schema enforcement error. The best way to avoid this problem is to infer the model schema based on a realistic data sample (training dataset) that includes missing values. Alternatively, you can declare integer columns as doubles (float64) whenever these columns may have missing values. See `Handling Integers With Missing Values <https://www.mlflow.org/docs/latest/models.html#handling-integers-with-missing-values>`_ for more details.
warnings.warn(
2024/06/05 16:45:04 INFO mlflow.models.evaluation.default_evaluator: Computing model predictions.
2024/06/05 16:45:04 INFO mlflow.models.evaluation.default_evaluator: The evaluation dataset is inferred as binary dataset, positive label is 1, negative label is 0.
2024/06/05 16:45:04 INFO mlflow.models.evaluation.default_evaluator: Testing metrics on first row...
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
2024/06/05 16:45:07 INFO mlflow.models.evaluation.default_evaluator: Shap explainer PermutationExplainer is used.
PermutationExplainer explainer: 2001it [12:06, 2.73it/s]
/anaconda/envs/azureml_py310_sdkv2/lib/python3.10/site-packages/mlflow/shap/__init__.py:437: UserWarning: Unable to serialize underlying model using MLflow, will use SHAP serialization
warnings.warn(
#https://learn.microsoft.com/en-us/azure/machine-learning/concept-mlflow?view=azureml-api-2#training-with-mlflow-projects-preview
# https://stackoverflow.com/questions/74656559/how-to-get-model-from-mlflow-from-run-id/78582321#78582321
# read data
= "https://raw.githubusercontent.com/mlflow/mlflow/master/tests/datasets/winequality-white.csv"
dataset_source_url = pd.read_csv(dataset_source_url, delimiter=";")
df =dataset_source_url, name="wine-quality-white-3")
dataset: mlflow.data.from_pandas(df, source
# split data
= df["quality"]
y = df.drop("quality", axis=1)
X
= X[(y==6) | (y==5)]
X = y[(y==6) | (y==5)]
y ==6]=1
y[y==5]=0
y[y
= train_test_split(
X_train, X_test, y_train, y_test =0.33, random_state=17
X, y, test_size
)
# hp
= [25, 50, 100, 200]
n_estimators_values
#mlflow.end_run()
"shap-2")
mlflow.set_experiment(
# enable autologging
mlflow.autolog()
for idx, n_estimators in enumerate (n_estimators_values):
= mlflow.start_run(run_name=f"run_{idx}")
current_run
="training")
mlflow.log_input(dataset, context
# train model
= RandomForestClassifier (n_estimators=n_estimators)
model
model.fit (X_train, y_train)
# --------------------------------------
# evaluate
#y_hat = model.predict(X_test)
= model.predict_proba(X_test)[:, 1]
y_hat = precision_recall_curve (y_test, y_hat)
precision, recall, thresholds = np.append (thresholds, values=1.0)
thresholds =thresholds[precision>0.7].min()
threshold= (y_hat>threshold).astype (int)
y_hat
# Create the PandasDataset for use in mlflow evaluate
= mlflow.data.from_pandas(
pd_dataset =y),
X.assign(label#predictions="predictions",
="label",
targets=dataset_source_url,
source="wine-quality-white-12",
name
)
= f"runs:/{current_run.info.run_id}/model"
model_uri = mlflow.evaluate(model=model_uri, data=pd_dataset, predictions=None, model_type="classifier",
result ={"explainability_algorithm": "permutation"})
evaluator_config# -------------------------------------
mlflow.end_run()
Caveats:
- Use same dataset as the original one, including both training and test sets??
- Do include the column for labels
- But do not include the one for predictions.
- While the evaluate model succeeds, it doesn't actually run SHAP well if we use the default Explainer:
Reason: ExplainerError('Additivity check failed in TreeExplainer! Please ensure the data matrix you passed to the explainer is the same shape that the model was trained on. If your data shape is correct then please report this on GitHub. This check failed because for one of the samples the sum of the SHAP values was 0.160800, while the model output was 0.080000. If this difference is acceptable you can set check_additivity=False to disable this check.'). Set logging level to DEBUG to see the full traceback.
<Figure size 1050x700 with 0 Axes>
- One solution to the above is to use a different type of Explainer. I used that solution above, based on `permutation`, since `kernel` is too slow. We can either sample or use a different kernel.
- Logging the input with context training doesn't prevent the autolog from logging an additional input with path `dummy`...
It seems we can either use check_additivity = False
:
https://github.com/shap/shap/issues/2777
Or use another type of Explainer, e.g., kernel-based
Try
- create_experiment followed by set_experiment
https://mlflow.org/docs/latest/tracking.html#tracking-runs
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-log-view-metrics?view=azureml-api-2&tabs=interactive#log-images
https://www.databricks.com/notebooks/gallery/MLflowLoggingAPIPythonQuickstart.html
Next steps
- https://mlflow.org/docs/latest/traditional-ml/hyperparameter-tuning-with-child-runs/index.html
- https://mlflow.org/docs/latest/tracking/tutorials/local-database.html#:~:text=In%20this%20tutorial%2C%20you%20will,of%20a%20simple%20access%20interface.m
Links
- My own answer in Stack Overflow:
https://stackoverflow.com/a/78582321/19850415